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Abstract 

Droughts continue to affect ecosystems, communities, and entire economies. Agriculture bears much of the impact, and in 

many countries it is the most heavily affected sector. Over the past decades, efforts have been made to assess drought risk at 

different spatial scales. Here, we present for the first time an integrated assessment of drought risk for both irrigated and rain-20 

fed agricultural systems at the global scale. Composite hazard indicators were calculated for irrigated and rain-fed systems 

separately using different drought indices based on historical climate conditions (1980-2016). Exposure was analyzed for 

irrigated and non-irrigated crops. Vulnerability was assessed through a social-ecological systems perspective, using social-

ecological susceptibility and lack of coping capacity indicators that were weighted by drought experts from around the world. 

The analysis shows that drought risk of rain-fed and irrigated agricultural systems displays heterogeneous pattern at the global 25 

level with higher risk for southeastern Europe, as well as northern and southern Africa. By providing information on the drivers 

and spatial patterns of drought risk in all dimensions of hazard, exposure, and vulnerability, the presented analysis can support 

the identification of tailored measures to reduce drought risk and increase the resilience of agricultural systems.  

 

Keywords: Drought, Hazard, Exposure, Vulnerability, Rain-fed agriculture, Irrigated agriculture 30 

1 Introduction 

Droughts exceed all other natural hazards in terms of the number of people affected, and have contributed to some of the 

world's most severe famines (FAO, 2018; CRED and UNISDR, 2018). Drought is conceived as an exceptional and sustained 
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lack of water caused by a deviation from normal conditions over a certain region (Tallaksen and Van Lanen, 2004, Van Loon 

et al., 2016). It can have manifold impacts on social, ecological, and economic systems, for instance agricultural losses, public 35 

water shortages, reduced hydropower supply, and reduced labor or productivity. While many sectors are affected by drought, 

agriculture’s high dependency on water means it is often the first one of the most heavily affected sectors (Dilley et al., 2005; 

UNDRR, 2019). With nearly 1.4 billion people (18% of the global population) employed in agriculture, droughts threaten the 

livelihoods of many, and are hampering the achievement of the Sustainable Development Goals (SDGs) – notably SDG1 (no 

poverty), SDG2 (zero hunger), SDG3 (good health & well-being), and SDG15 (life on land). While there is ambiguity 40 

regarding global drought trends in the past century (Sheffield et al., 2012; Trenberth et al., 2013; McCabe and Wolock, 2015), 

drought hazards will likely increase in many regions in the coming decades (Sheffield and Wood, 2008; Dai, 2011; Trenberth 

et al., 2013; Spinoni et al., 2017; UNDRR, 2019, Spinoni et al., 2019b). Identifying pathways towards more drought resilient 

societies therefore remains a global priority.  

  45 

Recent severe droughts in southeastern Brazil (2014-2017), California (2011-2017), the Caribbean (2013-2016), northern 

China (2010-2011), Europe (2011, 2015, 2018), India (2016, 2019), the Horn of Africa (2011-2012), South Africa (2015-2016, 

2018), and Viet Nam (2016), have clearly shown that the risk of negative impacts associated with droughts is not only linked 

to the severity, frequency, and duration of drought events, but also to the degree of exposure, susceptibility and coping capacity 

of the social-ecological system. Despite this, proactive management of drought risk is still not a reality in many regions across 50 

the world. Droughts and their impacts are still mostly addressed through reactive crisis management approaches, for example, 

by providing relief measures (Rojas, 2018). To improve the monitoring, assessment, understanding, and ultimately proactive 

management of drought risk effectively, we need to acknowledge that the root causes, patterns and dynamics of exposure and 

vulnerability need to be considered alongside climate variability in an integrated manner (Spinoni et al., 2019a; Hagenlocher 

et al., 2019). 55 

  

Over the past decades, major efforts have been made to improve natural hazard risk assessments and their methodologies 

across scales, ranging from global risk assessments to local level assessments. At the global scale several studies have been 

published in recent years, focusing on the assessment of flood risk (Hirabayashi et al., 2013; Ward et al., 2013, 2014), seismic 

risk (Silva et al., 2018), cyclone risk (Peduzzi et al., 2012), or multi-hazard risk (e.g. Dilley et al., 2005; Peduzzi et al., 2009; 60 

Welle and Birkmann, 2015; Garschagen et al., 2016; INFORM, 2019; Koks et al., 2019; UNDRR, 2019). While major progress 

has been made regarding the mapping, prediction and monitoring of drought events at the global scale (e.g. Yuan and Wood, 

2013; Geng et al., 2013; Spinoni et al., 2013, 2019b; Damberg and AghaKouchak, 2014; Hao et al., 2014; Carrão et al., 2017), 

very few studies have assessed either exposure to drought hazards (Güneralp et al., 2015) or drought risk at the global level 

(Carrão et al., 2016. The study by Carrão et al. (2016) presents the first attempt to map drought risk at the global scale while 65 

considering drought hazard (based on precipitation deficits), exposure (population, livestock, crops, water stress), and societal 
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vulnerability (based on social, economic and infrastructural indicators). While generic drought risk assessments are useful to 

get an overview of the key patterns and hotspots of drought risk, it is increasingly acknowledged that drought risk assessment 

should be tailored to the needs of specific users, so that management plans can be developed to reduce impacts (Vogt et al., 

2018; UNDRR, 2019). Impact or sector specific assessments of who (e.g. farmers) and what (e.g. crops) is at risk to what (e.g. 70 

abnormally low soil moisture, deficit in rainfall, below average streamflow), where, and why, are needed to inform targeted 

drought risk reduction, resilience and adaptation strategies (IPCC, 2014). Such analyses are currently lacking. Furthermore, in 

their exposure analysis, Carrão et al. (2016) do not distinguish between rain-fed and irrigated agriculture, although different 

hazard indicators are relevant when assessing drought risk for these systems. In addition, the vulnerability analysis presented 

by Carrão et al. (2016) is based on a reduced set of social, economic and infrastructure-related indicators, and does not account 75 

for the role of ecosystem-related indicators as a driver of drought risk - a gap that was recently highlighted in a systematic 

review of existing drought risk assessments across the globe (Hagenlocher et al., 2019). A social-ecological systems 

perspective, especially when assessing drought risk in the context of agricultural systems, where livelihoods depend on intact 

ecosystems and their services, can help to better understand the role of ecosystems and their services as a driver of drought 

risk, but also as an opportunity for drought risk reduction (Kloos and Renaud, 2016).  80 

 

This paper addresses some of the above gaps by presenting, for the first time, an integrated drought risk assessment for rain-

fed and irrigated agricultural systems considering relevant drought hazard indicators, exposure and vulnerability at the global 

scale. The spatial variability of drought risk on global and regional scales might help to identify leverage points in reducing 

impacts and properly anticipate, adapt and move towards resilient agricultural systems. 85 

2 Methods 

Today, it is widely acknowledged that risk associated with natural hazards, climate variability and change is a function of 

hazard, exposure and vulnerability (IPCC, 2014; UNDRR, 2019). Following that logic, Figure 01 shows the overall workflow 

of the assessment, while the subsequent sections describe in detail how drought risk for agricultural systems, including both 

irrigated and rain-fed systems, were assessed at the global scale.  90 
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Fig 01. Workflow for the overall global drought risk assessment for agricultural systems (including irrigated and rain-fed 

systems). 

 95 

The composite drought hazard indicators were calculated for irrigated and rain-fed systems separately using drought indices 

based on historical climate conditions (1980-2016), which resulted in integrated hazard maps for both rain-fed and irrigated 

agricultural systems, respectively. The different irrigated and non-irrigated crops by country were considered as the exposed 

element. Due to the lack of high-resolution gridded data on agricultural-dependent population at the global scale, this exposure 

indicator was not considered. The vulnerability component was assessed through a social-ecological systems (SES) lens, where 100 

social-ecological susceptibility and lack of coping capacity indicators were weighted by drought experts around the world.  

2.1 Drought hazard and exposure indicators 

The drought hazard indicators considered here represent the average drought hazard during the period 1980 to 2016 in each 

spatial unit for which it is computed. Drought hazard is defined as a deviation of the situation in a specific year or month from 

long-term mean conditions in the 30-year reference period from 1986 to 2015. To quantify drought hazard for such a long 105 
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period, we used the global water resources and water use model WaterGAP (Müller Schmied et al., 2014) and the global crop 

water model GCWM (Siebert and Döll, 2010). The models simulate terrestrial hydrology (WaterGAP) and crop water use 

(GCWM) for daily time steps on a spatial resolution of 30 arc-minutes (WaterGAP) or 5 arc-minutes (GCWM). The most 

recent version WaterGAP 2.2d was forced by the WFDEI-GPCC climate data set (Weedon et al., 2014) which was developed 

by applying the forcing data methodology developed in the EU-project WATCH on ERA-Interim reanalysis data. The GCWM 110 

used the CRU-TS 3.25 climate data set (Harris et al., 2014) as an input. CRU-TS 3.25 was developed by the Climate Research 

Unit of the University of East Anglia by interpolation of weather station observations and is provided as a time series of 

monthly values. Pseudo daily climate was generated by the GCWM as described in Siebert and Döll (2010). The distinct 

exposure of irrigated and rain-fed agricultural systems to drought was considered by weighting grid cell specific hazards with 

the harvested area of irrigated and rain-fed crops according to the Monthly Irrigated and Rain-fed Cropping Areas 115 

(MIRCA2000) dataset (Portmann et al., 2000) when aggregating grid cell specific hazards to exposure for 412 MIRCA2000-

units in subnational units for Argentina, Australia, Brazil, China, India, Indonesia and USA; and at a national scale elsewhere) 

or at country level. MIRCA2000 was also used to inform the models used in the hazard calculations about growing areas and 

growing periods of irrigated and rain-fed crops. The data set refers to the period centered around the year 2000; time series 

information is not available at the global scale. To maximize the representativeness of the land use, the reference period and 120 

evaluation period used in this study were centered around the year 2000.  

2.1.1 Rain-fed agricultural systems 

The composite drought hazard indicator for rain-fed agriculture (CH_RfAg) was quantified based on the ratio of actual crop 

evapotranspiration (AET - in m3 day-1) to potential crop evapotranspiration (PET in m3 day-1), calculated for the evaluation 

period 1980-2016 and compared to the reference period 1986-2015. PET quantifies the water requirement of the crop without 125 

water limitation while AET refers to the evapotranspiration under actual soil moisture conditions. 

 

The GCWM was applied for 24 specific rain-fed crops and the two groups "others annual" and "others perennial" to calculate 

crop specific AET and PET on a daily time step. Together, the 24 crops and two crop groups cover all crop species distinguished 

by FAO in their database FAOSTAT. The sum of daily crop specific AET and PET was calculated for all crops and for each 130 

year in the period 1980-2016 and aggregated to MIRCA2000-units. This procedure accounted for the differences in growing 

areas of the specific rain-fed crops across grid cells belonging to the same MIRCA2000 unit and therefore reflects the different 

exposure of specific crops in different parts of the MIRCA2000 unit to drought. 

 

The mean ratio between AET and PET (𝐴𝐸𝑇/𝑃𝐸𝑇) for the reference period 1986-2015 was then calculated for each 135 

MIRCA2000-unit. 𝐴𝐸𝑇/𝑃𝐸𝑇 reflects long-term water limitations for the geographic unit with low values for high aridity and 
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high values for low aridity. CH_RfAg was then determined by calculating the ratio 𝐴𝐸𝑇/𝑃𝐸𝑇 for each year from 1980-2016, 

and by deriving the percentile of a relative difference of 10% to the long-term mean ratio 𝐴𝐸𝑇/𝑃𝐸𝑇 from the time series. 

Consequently, CH_RfAg reflects the probability for the occurrence of a drought year in which the ratio between total AET and 

total PET across all rain-fed crops is 10% lower than the long-term mean ratio 𝐴𝐸𝑇/𝑃𝐸𝑇. We also tested other percentage 140 

thresholds (20%, 30%, 50%), but for many parts of the world we never computed reductions of the ratio AET/PET by more 

than 10% of the long-term mean ratio. Therefore, it was decided to use the 10% threshold consistently. 

2.1.2 Irrigated agricultural systems 

The composite drought hazard indicator for irrigated agriculture (CH_IrrigAg) combines an indicator for streamflow drought 

hazard (SH), i.e. for abnormally low streamflow in rivers, with an indicator of abnormally high irrigation water requirement 145 

(IH). It thus considers the deviations of both demand and supply of water from normal conditions. SH and IH are computed 

with a spatial resolution of 0.5° by 0.5° (55 km by 55 km at the equator). Greenland and Antarctica are excluded. As IH is not 

meaningful in grid cells without irrigation, CH_IrrigAg is only computed for grid cells in which irrigated crops are grown 

according to MIRCA2000 (Portmann et al., 2000).  

 150 

IH was calculated by using the GCWM based on a monthly time series of net irrigation requirements from 1980 to 2016. The 

net irrigation requirement is the volume of water needed to ensure that the AET of irrigated crops is similar to their PET. The 

calculations were performed for 487,121 grid cells with a resolution of 5 arc-minutes containing irrigated crop areas and then 

aggregated to 26,478 grid cells with a 30 arc-minute resolution to be consistent with the resolution used by WaterGAP. SH 

was calculated by using WaterGAP based on a monthly time series of streamflow from 1980 to 2016 in 66,896 0.5° grid cells 155 

world-wide.  

 

For both IH and SH, drought hazard per grid cell was quantified as the product of a (scaled or transformed) mean severity of 

all drought events during the evaluation period 1980-2016 and the frequency of drought events during this period. Drought 

events for IH and SH were determined independently. In the case of IH computation, a drought event starts as soon as the 160 

monthly irrigation requirement exceeds the irrigation requirement threshold and ends when the surplus reaches zero. In the 

case of SH computation, a drought starts if the monthly streamflow drops below the streamflow threshold and ends as soon as 

the deficit reaches zero. For each grid cell and each of the 12 calendar months, a drought threshold was defined as the median 

of the variable values in the respective calendar month during the reference period 1986-2015. To avoid spurious short droughts 

and drought interruptions, it was defined that 1) a drought event starts with at least two consecutive months with an IH surplus 165 

or a SH deficit and 2) one month without an IH surplus or if a SH deficit does not break the event (Spinoni et al., 2019a). The 

accumulated surplus (IH) / deficit (SH) during each drought event is the severity of the drought event. Mean severity is 
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computed as the arithmetic average of the severity of all drought events during the evaluation period. As in case of SH the 

deficit and thus the severity of streamflow drought is strongly correlated with the mean annual streamflow, mean severity is 

therefore scaled by dividing the accumulated streamflow deficit by mean annual streamflow. In this way scaled mean 170 

streamflow drought severity is expressed as fraction of the mean annual flow volume that is on average missing during drought 

events. In the case of IH, mean severity is transformed logarithmically before computation of IH.  

 

The composite drought hazard indicator for irrigated agriculture CH_IrrigAg was then calculated for each grid cell by 

combining the streamflow hazard SH and irrigation requirement hazard IH. To ensure that both indicators are weighted equally, 175 

their native values were first scaled to a range between 0 and 1 by dividing SH and IH in each grid cell by the maximum SH 

or IH detected globally. The frequency distribution of the SH values calculated that way was shifted to the left with a mean of 

0.244 while the frequency distribution of IH was shifted to the right with a mean of 0.664. Therefore, CH_IrrigAg was 

calculated for each grid cell as: 

 180 

𝐶𝐻_𝐼𝑟𝑟𝑖𝑔𝐴𝑔 = 0.5(𝑆𝐻/𝑆𝐻 + 𝐼𝐻/𝐼𝐻)                                           (01) 

 

with SH being the grid cell specific streamflow hazard, IH being the grid cell specific irrigation requirement hazard and 𝑆𝐻and 

𝐼𝐻 being the mean of SH or IH calculated across all grid cells. 

 185 

The exposure of irrigated agricultural systems to drought at subnational (402 MIRCA2000 units) and national scale was 

derived as the harvested area weighted mean of the CH_IrrigAg across all grid cells belonging to the respective aggregation 

units.  

2.1.3 Integration of drought exposure of rain-fed and irrigated cropping systems 

The combined drought exposure for rain-fed and irrigated cropping systems was evaluated for the 402 MIRCA2000-units and 190 

at country level by averaging the harvested area weighted drought exposure of irrigated and rain-fed cropping systems. As 

described before, distinct methods were used to calculate hazard and exposure of irrigated and rain-fed systems so that a direct 

comparison of the exposure values is not meaningful. In addition, the frequency distributions differed considerably, with a 

harvested area weighted global mean of the drought exposure of 0.445 for irrigated systems and 0.124 for rain-fed systems. 

To ensure a more similar weight of rain-fed and irrigated drought exposure, the MIRCA2000-unit specific exposures were 195 

divided by the global mean, and then the integrated exposure was calculated as harvested area weighted mean: 

 

𝐸𝑥𝑝𝑡𝑜𝑡 = ((𝐴𝐻𝑟𝑓 ⋆ 𝐸𝑥𝑝𝑟𝑓  / 0.124) + (𝐴𝐻𝑖𝑟𝑟 ⋆ 𝐸𝑥𝑝𝑖𝑟𝑟  / 0.445)) / 𝐴𝐻𝑡𝑜𝑡                          (02) 
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with 𝐸𝑥𝑝𝑡𝑜𝑡 , 𝐸𝑥𝑝𝑟𝑓, and 𝐸𝑥𝑝𝑖𝑟𝑟 being the exposure of the whole cropping system (both rain-fed and irrigated cropping 200 

systems) to drought and 𝐴𝐻𝑡𝑜𝑡, 𝐴𝐻𝑟𝑓, and 𝐴𝐻𝑖𝑟𝑟  being the harvested area of all crops (both rain-fed and irrigated crops). For 

countries with sub-national resolution of the MIRCA2000-units, the exposure of the whole cropping system to drought at 

country level was then calculated as the harvested area weighted mean across 𝐸𝑥𝑝𝑡𝑜𝑡  of the MIRCA2000-units belonging to 

the specific countries. 

2.2 Vulnerability and risk assessment 205 

According to the Intergovernmental Panel on Climate Change (IPCC) (2014), vulnerability is the predisposition to be adversely 

affected as a result of the sensitivity and susceptibility of a system and its elements to harm, coupled with a lack of coping and 

adaptive capacity. The assessment of drought vulnerability is complex because it depends on both biophysical and 

socioeconomic drivers (Naumann et al., 2014). Due to this complexity, the most common method to assess vulnerability in the 

context of natural hazards and climate change is using composite indicators or index-based approaches (Beccari, 2016; 210 

Sherbinin et al., 2019). Although their usefulness for policy support has also been subject to criticism (Hinkel, 2011), it is 

widely acknowledged that composite indicators can identify generic leverage points for reducing impacts at the regional to 

global scale (Sherbinin et al., 2017, 2019; UNDRR 2019). 

 

Following the workflow to calculate composite indicators proposed by the Organisation for Economic Co-operation and 215 

Development (OECD, 2008) and Hagenlocher et al. (2018), the methodological key steps on which the vulnerability 

assessment is based are: 1) definition of the conceptual framework, 2) identification of valid indicators, 3) data acquisition and 

pre-processing, 4) analysis and imputation of missing data, 5) detection and treatment of outliers, 6) assessment of 

multicollinearities, 7) normalization, 8) weighted aggregation, and 9) visualization. 

 220 

An initial set of vulnerability indicators for agricultural systems was identified based on a recent review of existing drought 

risk assessments (Hagenlocher et al., 2019). In total 64 vulnerability indicators, including social, economic, physical, farming 

practices, environmental, governance, crime and conflict factors, were selected and classified by social-ecological 

susceptibility (SOC_SUS, ENV_SUS), lack of coping capacity (COP) and lack of adaptive capacity (AC) following the risk 

framework of the IPCC (IPCC, 2014). Indicator weights, which express the relevance of the identified indicators for 225 

characterizing and assessing the vulnerability of agricultural systems to droughts, were identified through a global survey of 

relevant experts (n = 78) around the world; the majority of whom have worked in academia and for governmental organizations 

with more than five years of work experience (Meza et al., 2019). In total, 46 of the 64 indicators were considered relevant by 

the experts, comprising susceptibility, coping and adaptive capacity indicators. However, since adaptive capacity is only 

relevant when assessing future risk scenarios and less relevant to current risk, indicators related to adaptive capacity and 230 
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indicators that could be measured with the same data source due to their similarity were removed. This resulted in a set of 36 

indicators as part of the vulnerability assessment (Table 01).  

 

Following data acquisition, the data were pre-processed by transforming absolute to relative values and standardized when 

necessary (e.g. travel time to cities ≤30 min (population), divided by the total population). Descriptive statistics were used to 235 

evaluate the degree of missing data. The imputation of missing values was done with data from previous years and using 

secondary sources following Naumann et al. (2014) in cases where the r value lay between -1.0 to -0.9 or 1.0 to 0.9 using a 

Spearman correlation matrix and scatter diagram for visual interpretation. Following suggestions by Roth et al. (1999), Peng 

et al. (2006) and Enders (2003), listwise and pairwise deletion thresholds were selected when >30% of data were missing on 

a country level and when > 20% of data were missing on the indicator level. After the deletion, 168 countries and 26 indicators 240 

were considered for the final analysis. To detect potential outliers, scatter plots and box plots for each indicator were created. 

Potential outliers were further examined using triangulation with other sources and past years. On this basis, outliers were 

identified in only one indicator (i.e. fertilizer consumption (kg/ha of arable land)) and treated using winsorization following 

Field (2013). Multicollinearities were identified using a Spearman correlation matrix for the different vulnerability components 

(social susceptibility, environmental susceptibility and lack of coping capacity). Following the rule proposed by Hinkle et al. 245 

(2003), any values higher than r > 0.9 or smaller than r < -0.9 were considered very highly correlated. The correlation was 

considered only if it was significant at the 0.05 level (2-tailed). Two indicators for the lack of coping capacity component (i.e. 

healthy life expectancy at birth (years), and disability-adjusted life) showed high and significant correlations. However, no 

indicators were excluded on this basis, due to the difference in concepts they represented and their relevance at global level. 

In order to render the indicators comparable, the final selected indicators were normalized to a range from 0 to 1 using min-250 

max normalization (Naumann et al., 2014; Carrão et al., 2016): 

 

𝑍𝑖 = 𝑋𝑖  – 𝑋𝑚𝑖𝑛  / 𝑋𝑚𝑎𝑥  –  𝑋𝑚𝑖𝑛                              (03) 

 

where Zi is the normalized score for each indicator score Xi. For variables with negative cardinality to the overall vulnerability 255 

the normalization was defined as:  

 

𝑍𝑖 = 1 − (𝑋𝑖  – 𝑋𝑚𝑖𝑛  / 𝑋𝑚𝑎𝑥  –  𝑋𝑚𝑖𝑛)                             (04) 

 

Finally, the normalized indicator scores were aggregated into vulnerability components (SOC_SUS, ENV_SUS, COP) using 260 

weighted arithmetic aggregation based on (using the example of SOC_SUS):  

 

𝑆𝑂𝐶−𝑆𝑈𝑆 = ∑ 𝑊𝑖  𝑍𝑖                                                                                                                                                              (05) 
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where Wi are the weights for each normalized dataset, and Zi are the weights as obtained from the global expert survey. Thereby, 265 

weights were normalized to add up to 1. The final indicators and their respective weights are listed in Table 01. The 

vulnerability components of social-ecological susceptibility (SE_SUS) were combined using an average, which was then 

combined with lack of coping capacity (COP) to obtain a final vulnerability index (VI) score: 

 

VI =V(SE_SUS) + V (COP) / 2                                                                                                                                                (06) 270 

 

Table 01.Vulnerability indicators used in the analysis and their related expert-weights*. 

Indicator Data source Weight* 

Social susceptibility (SOC_SUS) 

Share of GDP from agr., forestry and fishing in US$ (%) FAO (2016) 0.96 

Rural population (% of total population) World Bank (2011-2017) 0.85 

Prevalence of undernourishment (% of population) World Bank (2015) 0.82 

Literacy rate, adult total (% of people ages 15 and above) World Bank (2015) 0.80 

Prevalence of conflict/insecurity (Crime and Theft, Index (0-30)) World Bank (2017) 0.76 

Proportion of population living below the national poverty line (%)  SDG indicators (2015-2017) 0.75 

Access to improved water sources (% of total population with access) World Bank/FAO (2015) 0.66 

DALYs (Disability-Adjusted Life Years)(DALYs per 100,000, Rate) GBD (2016) 0.65 

GINI index World Bank (2017) 0.64 

Agricultural machinery, tractors per 100 sq. km of arable land World Bank (2009) 0.63 

Insecticides and pesticides used (ton/ha) FAO (2016) 0.63 

Gender Inequality Index UNDP (2018) 0.62 

Electricity production from hydroelectric sources (% of total) World Bank (2015) 0.62 

Unemployment, total (% of total labor force) (national estimate) World Bank (2017) 0.60 

Dependency ratio (Population ages 15-64 (% of total population)) World Bank (2011-2016) 0.60 

Population using at least basic sanitation services (%) WHO (2015) 0.60 

Healthy life expectancy (HALE) at birth (years) WHO (2014) 0.56 

Ecological susceptibility (ECO_SUS) 

Average land degradation in GLASOD erosion degree FAO (1991) 0.92 

Fertilizer consumption (kilograms per hectare of arable land) World Bank (2015) 0.74 

Average soil erosion FAO (1991) 0.72 

Terrestrial and marine protected areas (% of total territorial area) World Bank (2016-2017) 0.63 

Lack of coping capacity (COP) 

Saved any money in the past year (% age 15+) Global FINDEX (2014-2017) 0.87 

Government Effectiveness: Percentile Rank World Bank (2017) 0.85 

Total dam storage capacity per capita. Unit: m3/inhab FAO Aquastat (2017) 0.82 

Total renewable water resources per capita (m3/inhab/year) FAO (2014) 0.76 

Corruption Perception Index (CPI) Transparency International (2017) 0.68 
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Travel time to cities ≤30 min (population) (%) JRC (2015) 0.65 

 * derived from a global expert survey (Meza et al., 2019) 

 

The final drought risk index (DRI) was calculated by multiplying the indices for drought hazard and vulnerability, when the 275 

analysis was performed at pixel level (irrigated agricultural system). In contrast, when the analysis was performed at aggregated 

level, hazard/exposure was multiplied with vulnerability to calculate risk (MIRCA2000-units to country level) (rain-fed 

agricultural system). At pixel level, the presence of hazard and vulnerability point to a certain drought risk, independent of 

how much crop area is contained in the specific pixel. At aggregated level, the different crop areas in the specific pixels must 

be considered; therefore exposure was calculated as harvested area weighted mean of the pixel level hazard and then multiplied 280 

with vulnerability to calculate drought risk.  

 

The total drought risk score for irrigated and rain-fed systems combined (DRItot) is derived by multiplying the exposure of the 

whole cropping system Exptot (Equation 02) with the vulnerability index VI.  

2.3 Validation against drought impact data 285 

The outcomes of the risk assessment for irrigated and rain-fed systems combined (DRItot) were validated against impact data 

from the international Emergency Events Database (EM-DAT) of the Centre for Research on the Epidemiology of Disasters 

(CRED) using visual correlation (Fig. 06). EM-DAT systematically collect reports of drought events and drought impacts from 

various sources, including UN agencies, NGOs, insurance companies, research institutes and press agencies. Here, the number 

of drought events within period 1980-2016 was used as an input for the validation. Thereby, a drought event is registered in 290 

EM-DAT when at least one of the following criteria applies: 10 or more people dead; 100 or more people affected; declaration 

of a state of emergency or a call for international assistance. 

3 Results 

This section presents the results of the global drought risk assessment for agricultural systems (irrigated and rain-fed) (Fig. 02 

and 03) and for the total risk of both systems combined (Fig. 04). The drought risk for irrigated agricultural systems is presented 295 

at 0.5 degrees (Fig. 02) and at national resolution (Fig. 04), while drought risk for rain-fed systems is presented for 

MIRCA2000-units (at sub-national resolution for USA, Brazil, Argentina, China, India, Australia and Indonesia; national 

resolution elsewhere (Fig. 03); and at national resolution (Fig. 04). Drought risk for all crops (irrigated and rain-fed) is shown 

at national resolution (Fig. 04) and for MIRCA2000-units (Fig. 06). The patterns colored dark red show high levels of the 

different risk components, while the dark blue colors reflects low scores of the different risk components. 300 
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3.1 Drought risk for irrigated agricultural systems 

 
Fig 02. Drought risk (a), hazard/exposure (b) and vulnerability (c) for irrigated agricultural systems. The legends were defined 

by assigning the median of the value distribution to the yellow color in the center, the 90th percentile to the deepest red color, 305 

the 10th percentile to the deepest blue color, and by determining the class ranges of the other colors by linear interpolation. 

Risk was directly calculated by multiplying hazard with vulnerability (pixel-level analysis).  

 

The drought risk for irrigated agricultural systems varies significantly among continents and countries. Especially large 

countries such as USA, Brazil, China and Australia show a high variation at country level, due to varying climatic conditions. 310 

Drought hazard/exposure was highest in regions with a high density of irrigated land and high irrigation water requirements 

such as the western part of USA, central Asia, northern India, northern China and southern Australia. Vulnerability was high 

particularly in sub-Saharan Africa but also in some countries in central Asia and the Middle East region and low in general for 

industrialized and high income countries. The combination of hazard and vulnerability to risk resulted in highest values for 

large parts of west, central and south Asia, eastern Africa and the eastern part of Brazil. Low risk areas include western Europe, 315 

USA, Australia and most parts of China (Fig. 02).  
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3.2 Drought risk for rain-fed agricultural systems 

 
Fig 03. Drought risk (a), hazard/exposure (b) and vulnerability (c) for rain-fed agricultural systems. The legends were defined 320 

by assigning the median of the value distribution to the yellow color in the center, the 90th percentile to the deepest red color, 

the 10th percentile to the deepest blue color and by determining the class ranges of the other colors by linear interpolation. 

Risk was calculated by multiplying hazard/exposure with vulnerability (analysis at aggregated MIRCA2000-units). 

 

Rain-fed drought hazard/exposure and drought risk are computed at national level, except for selected larger countries, such 325 

as Australia and USA, where a subnational division is applied. High levels of risk (dark yellow to red color scheme) for rain-

fed agricultural systems are observed in southern Africa, southeastern Europe and western Asia. The top three hazard/exposure 

countries are United Arab Emirates, Oman and Bahrain (the latter two also possessing high vulnerability scores), meanwhile 

the United Arab Emirates performed better on social-ecological susceptibility, which resulted in lower drought risk values. 

 330 

The vulnerability to drought highlights the relevance to increase the coping capacity of the countries in order to reduce their 

overall drought risk. For instance, Australia, despite being highly exposed to drought hazard, has low socio-ecological 

susceptibility and high enough coping capacities to considerably reduce the overall drought risk. 
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3.3 Drought risk for agricultural systems (irrigated and rain-fed combined) 335 

 
Fig 04. Drought risk (a), hazard/exposure of irrigated (b), rain-fed (c), and the whole crop production sector (d). The legends 

were defined by assigning the median of the value distribution to the yellow color in the center, the 90th percentile to the 

deepest red color, the 10th percentile to the deepest blue color, and by determining the class ranges of the other colors by linear 

interpolation. Risk was calculated by multiplying hazard/exposure with vulnerability shown in Fig. 02c and 03c. 340 

 

The hazard/exposure maps shown in the Figure 04 are slightly different to the ones shown in Figures 02 and 03 due to the 

aggregation at country level. The analysis shows that regions with low hazard/exposure of rain-fed and irrigated crops to 

drought tend to be semi-arid and subarctic regions following the Köppen-Geiger climate classification (1980-2016) (Beck et 

al., 2018). There are significant regional differences when comparing irrigated and rain-fed drought hazard/exposure. For 345 

instance, the northern part of Latin America and Central Africa have low hazard/exposure levels, given the humid climate 

conditions resulting in a low total risk, even though those regions are characterized by high vulnerability levels. Southern 

Africa, however, has a high amount of drought-exposed rain-fed crops, but a lower vulnerability compared to other African 

countries. Despite this, risk scores in that region are very high. Very high drought hazard/exposure and vulnerability levels can 

be found in the Middle East and Northern Africa.  350 

 

Although the drought hazard was computed differently for the different agricultural systems, the countries with high risk of 

drought to both farming systems are Botswana, Namibia and Zimbabwe (Fig. 02 and 03), these countries share the same 

relevant indicators that define their high vulnerability: high soil and land degradation rate, low literacy rate, and low total 
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renewable water (Supplementary (S3)). Table 02 shows the top and bottom ten countries with the highest/lowest total drought 355 

risk (DRItot) as well as their hazard/exposure and vulnerability scores.  

 

Table 02. Rank of countries with the highest and lowest risk of drought for combined agricultural systems (rain-fed and 

irrigated) 

Country Drought risk 

(countries rank) 

Risk score 

total 

Hazard/Exposure Vulnerability 

score  Haz/Exp 

irrigated 

Haz/Exp  

rain-fed 

Haz/Exp 

total 

Botswana 1 1.389 0.466 3.589 3.553 0.391 

Namibia 2 1.219 0.769 3.073 2.969 0.411 

Zimbabwe 3 1.155 0.967 2.532 2.394 0.483 

Algeria 4 1.12 0.969 2.952 2.626 0.426 

Morocco 5 1.102 0.774 3.129 2.626 0.419 

East Timor 6 1.043 0.971 2.815 2.757 0.378 

Armenia 7 0.95 0.987 3.048 2.290 0.415 

Hungary 8 0.907 0.932 2.516 2.476 0.366 

Tunisia 9 0.886 0.949 2.460 2.184 0.406 

Yemen 10 0.867 0.613 2.323 1.652 0.525 

Republic of the Congo 152 0.006 0.741 0.008 0.014 0.426 

Belize 153 0.006 0.943 0.000 0.016 0.375 

Fiji 154 0.005 0.833 0.000 0.016 0.329 

Guinea 155 0.004 0.822 0.000 0.009 0.452 

Burkina Faso 156 0.003 1.114 0.000 0.007 0.426 

Vanuatu 157 0 No crop 0.000 0.000 0.388 

Uganda 158 0 0.798 0.000 0.000 0.434 

Gambia 159 0 0.760 0.000 0.001 0.394 

D. R. C. 160 0 0.886 0.000 0.001 0.459 

C. A. R. 161 0 0.646 0.000 0.000 0.505 

 360 

 

Seven out of the ten countries with the highest overall drought risk are located on the African continent. However, Armenia, 

Yemen and Hungary also possess high risk levels (Table 02). Botswana ranks as the country with the highest drought risk 

mainly due to its high exposure combined with its relatively high vulnerability (S1). 

 365 

In general, the countries that present higher drought risk have a high amount of exposed crops. Vulnerability varies among 

them, with Yemen being the country with the highest vulnerability. The lack of coping capacity and social-ecological 

susceptibility were determinant factors for countries like Yemen and Zimbabwe (S1). There were cases where countries such 

as Namibia presented high socio-ecological susceptibility in contrast with high coping capacity, reducing its overall 

vulnerability. The drought risk in countries such as Afghanistan and Venezuela that have in contrast limited coping capacities, 370 
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is notably higher (S1). The analysis also reveals that, although risk is currently zero in several countries (e.g. DRC, C.A.R., 

Uganda, etc.), this could rapidly change once these countries are affected by droughts given their very high vulnerability.  

  

The comparison of the drought risks of rain-fed and irrigated cropping systems (Fig. 05) shows that several countries such as 

Zimbabwe, Iraq and Algeria are exposed to high risk for both cropping systems. These countries are frequently hit by drought 375 

and similarly have a high vulnerability to drought (Fig. 02 and 03). In contrast, countries such as Switzerland, Finland and 

New Zealand are characterized by low drought hazard/exposure for irrigated and rain-fed systems and low vulnerability to 

drought (Fig. 02 and 03). In countries such as Botswana, Oman and the United Arab Emirates, drought risk is high for rain-

fed cropping systems but low for irrigated cropping systems (Fig. 05). These countries are defined by arid climate conditions 

exposing rain-fed crops to high risk while the drought risk for irrigated cropping systems is low because of relatively low 380 

interannual variability in climatic conditions resulting in low variability of irrigation water requirement and streamflow. In 

contrast, drought risk for irrigated cropping systems is high and drought risk of rain-fed cropping systems is small in countries 

such as Burkina Faso, Madagascar and Cote D’Ivoire (Fig. 05). In all three countries, there is a big variability in climatic 

conditions with irrigated crops being cultivated in the more arid parts of the country and rain-fed crops in more humid parts. 

In addition, aquatic crops with a high water demand such as rice and sugarcane, are the most commonly cultivated irrigated 385 

crops in these countries (Frenken, 2005). 
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Fig. 05 Country profiles contrasting the drought risk of irrigated and rain-fed agricultural systems. The size of the bubbles 

indicates the crop growing area (sum of rain-fed and irrigated areas based on MIRCA units). 

 390 

3.4 Validation  

The comparison of drought risk (DRItot) with drought events registered in EM-DAT shows good agreement in many countries. 

For countries which have low drought risk such as the countries in tropical Africa, northern and western Europe or countries 

in the northern part of South America, there is either none or just one drought registered in EM-DAT (Figure 06a, 06c). There 

is also good agreement for countries in southern Africa and northwest Africa with very high drought risk and many registered 395 

drought events and for countries with intermediate drought risk such as Canada, Australia or Spain. However, some 

disagreement between calculated risk and the number of reported drought events is acknowledged. For instance, in several 

large countries such as USA, Brazil, Russia, China and India, the calculated drought risk is low or intermediate although a 

large number of drought events have been registered in EM-DAT. The reason for this disagreement is that the risk shown in 

Figure 06a is representative for the whole country while drought events which only have local or regional impacts are also 400 

registered in EM-DAT (see Sect. 2.3). For all these big countries, we detected considerable spatial heterogeneity with regard 

to drought risk where regions with high drought risk such as the central part of USA, northeast Brazil, northern China, 
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northwest India and southern Russia are complemented with other regions of low drought risk (Fig. 06b). Therefore, the high 

number of registered drought events in EM-DAT is corroborated by the presence of high regional drought risk. 

  405 

 

Fig 06. Validation of total risk against drought impact data  
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4 Discussion 

The present study performs, for the first time, a separate global drought risk analysis for irrigated and rain-fed cropping 410 

systems, including regions that indicate a high vulnerability to droughts and are particularly exposed. In previous assessments, 

the share of irrigated cropland was either ignored or considered as a vulnerability indicator (Carrão et al., 2016). The drought 

hazard analysis is based on three indicators: streamflow drought hazard (SH), abnormally high irrigations water requirement 

(IH), and a composite drought hazard indicator for rain-fed agriculture (CH_RfAg), which quantify drought as a deviation from 

normal conditions consistent with common definitions. In agreement with the results for drought hazard obtained by Carrão et 415 

al. (2016), the largest drought hazard is obtained for arid and semi-arid regions such as northern and southern Africa, 

southeastern Europe, the Arabian Peninsula and Mongolia for rain-fed systems, Italy, Turkey and Western Mexico for irrigated 

systems and the western USA, northeast Brazil, western Argentina, central Asia, Middle East countries, western India, northern 

China and southern Australia for both irrigated and rain-fed systems. For irrigated systems this includes Italy, Turkey and 

Western Mexico, whilst for both irrigated and rainfed systems this represents the western USA, northeast Brazil, western 420 

Argentina, central Asia, Middle East countries, western India, northern China and southern Australia. In contrast, previous 

studies based on standardized indices such as the SPI have detected the highest drought hazard mainly in humid regions such 

as central Europe, southeast Asia, southern Brazil and tropical Africa (Geng et al., 2015). The reason for this difference could 

be that deviations from normal conditions should not be treated similarly for arid and humid regions as not every precipitation 

or streamflow deficit in humid regions will automatically become a hazard for cropping systems. In fact, in humid regions, 425 

crops often perform better in relatively dry years (Holzkamper et al., 2015). We account for these effects by normalizing 

streamflow deficits with long-term mean annual river discharge (SH) or by calculating the probability of reductions in the 

AET/PET ratio of rainfed crops in relative terms (CH_RfAg).  

 

In the present study, the rain-fed hazard is computed as the probability of a 10% decline in the AET/PET ratio compared to 430 

long-term mean conditions, whereas the irrigated drought hazard represents the combination of severity and frequency values 

derived from streamflow or irrigation water requirement (see Sect. 2). While the methodology reflects well the common 

understanding of the factors most influential for drought hazard in the two cropping systems, a direct numerical comparison 

of the calculated hazard for rain-fed and irrigated systems is not meaningful. The hazards and exposure calculated in this study 

should be used to rank or compare countries within the rain-fed or irrigated domain but not in between. Our attempt to calculate 435 

hazard, exposure and risk for the whole crop production sector by assigning a similar weight to the hazard-exposures for rain-

fed and irrigated systems must be viewed critically and results should be taken with care. A potential way to derive specific 

weights for rain-fed and irrigated exposure could be validating calculated hazard and exposure, but also vulnerability and risk, 

with information about drought impacts separately, for both irrigated and rain-fed systems. Lack of data for drought impacts 

distinguishing rain-fed and irrigated systems was the main reason why this approach was not implemented for the current 440 

study. 
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The calculation of the drought hazard of irrigated cropping systems in this study is based on the two components streamflow 

hazard (SH) and irrigation requirement hazard (IH) reflecting water supply (SH) and water demand (IH) of irrigated systems. 

Therefore we do not consider specifically in our approach the availability and use of groundwater resources for irrigation. It is 445 

well agreed that dynamics in streamflow are usually larger than dynamics in groundwater storage, so that groundwater is used 

by many farmers to substitute temporary deficits in surface water supply for irrigation systems. In general, access to 

groundwater should therefore be considered to reduce drought hazard for irrigated cropping systems. Consideration of 

groundwater resources would, however, require dynamic quantification of groundwater storage and groundwater levels, which 

is challenging for global scale analyses and not possible with the models applied in this study. In addition, more conceptual 450 

work is needed to decide which degree of temporal variability in groundwater levels constitutes a hazard and how to treat long-

term depletion of groundwater resources (negative trends) in drought studies. 

 

The multi-dimensional nature of vulnerability of agricultural systems is represented by a set of 26 expert-weighted indicators, 

comprising social, economic, environmental, physical, and governance-related factors contributing to social-ecological 455 

susceptibility and the lack of coping capacity. In doing so, the present study goes beyond existing global drought risk 

assessments (Carrão et al., 2016) which are based on equal weights and do not consider relevant environmental vulnerability 

indicators as a driver of drought risk. The latter, however, is relevant when assessing drought risk for agricultural systems, 

where factors such as land degradation or soil erosion are shown to exacerbate drought risk (Hagenlocher et al., 2019).  

 460 

Nevertheless, the findings of the drought risk assessment correspond to the findings of Carrão et al. (2016), who also found 

southern and northern Africa as well as the Middle East to be severely at risk. Moreover, the present study includes a spatially 

explicit model of AET for the main crop types of two different agricultural systems (irrigated and rain-fed agriculture), and 

includes a specialized vulnerability index for this sector according to expert judgment. These differences have revealed the 

importance to be impact focused on drought risk assessments, even within the same sector. For instance, irrigated agricultural 465 

systems in Latin America are highly exposed to droughts, whereas the probability of droughts occurring in rain-fed agricultural 

systems in that region is comparably low.  

 

However, despite these advancements, the presented analysis does have limitations. First, due to the lack of up to date land 

use data on irrigated vs. rain-fed agriculture at the global scale, the exposure analysis is based on MIRCA data from the year 470 

2000 (Portmann et al., 2000). Given that cropping systems are subject to change, this adds uncertainty to the results. Drought 

exposure in large countries with variable climate conditions such as Russia and Canada needs to be viewed critically, since 

drought exposure is significantly higher in some parts of these countries when conducting the analysis at provincial or pixel 

level. For instance, China shows a high variation in exposure levels in the eastern and western parts of the country when 
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analyzed at pixel level (Fig. 02 and 03). Second, data used for the vulnerability analysis stems from different sources which 475 

makes it difficult to evaluate the inherent uncertainties in the data. Third, the data is not consistently available for all countries 

for the same years (Table 01). Fourth, the vulnerability analysis is based on nation-state resolution data, which does not allow 

for mapping spatial variability in vulnerability at the sub-national level. Fifth, applying expert opinions to weigh drought 

vulnerability indicators according to their relevance brings subjectivity to the assessment, which necessitates a strong network 

of relevant experts. Sixth, preventive/adaptive planning requires going beyond evaluating drivers of risk and mapping current 480 

patterns of risk. Future scenarios of drought risk, considering both changing environmental and climate conditions as well as 

possible future socio-economic development pathways, are needed in order to anticipate future challenges.  

 

Future research should address these challenges by also investigating sub-national patterns in vulnerability, and developing 

future drought risk scenarios in all dimensions of drought hazards, exposure, and vulnerability. In addition, attempts to 485 

investigate changes and trends in drought risk and risk components are highly needed to better understand trajectories of 

drought risk in different countries and for the whole world. Further, inherent uncertainties as well as the sensitivity of the risk 

assessment outcomes towards changes in the input parameters (e.g. indicator choice and weighting) should be investigated. 

This gap has also been highlighted in a recent review of climate vulnerability assessments (Sherbinin et al., 2019) in general, 

as well as in a recent review of drought risk assessments (Hagenlocher et al., 2019) in particular.  490 

 

The validation conducted in this study, has shown that there is limited data available on agricultural losses and impacts caused 

by droughts at the global level. Furthermore, impacts are not always direct, as droughts can have cascading indirect impacts 

(Freire-Gonzales et al., 2017; Van Lanen et al., 2017) which are difficult to assess. In addition, for countries where we find 

high drought risk (e.g., Mongolia, Iran, Kazakhstan and the countries in southeast Europe), no or very few drought events are 495 

registered in EM-DAT. The reason for this mismatch could be that drought events in these countries were not registered in 

EM-DAT. For example, in Romania, EM-DAT reports two drought events while according to other reports, twelve years 

between 1980 and 2012 were classified as drought years with 48% of the agricultural land affected (Lupu et al., 2010; Mateescu 

et al., 2013). On top of this, in Iran, EM-DAT reports one drought event while other sources recounted several droughts during 

1980-2005, with the most extreme drought lasting for four years from 1999 to 2002 (Javanmard et al., 2017; Zoljoodi and 500 

Didevarasl, 2013). These examples suggest that it cannot be concluded from missing drought records in EM-DAT that specific 

countries were not affected by drought.   

 

Lastly, while this presents the first attempt to assess drought risk for agricultural systems, more work is needed to analyze 

drought risk for other sectors, such as public water supply, tourism, energy production, water-borne transport, among others.  505 
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5 Conclusions 

This paper presents, for the first time, a global-scale drought risk assessment for both irrigated and rain-fed agricultural systems 

from a social-ecological perspective by integrating drought indicators for hazard, exposure, and vulnerability. It goes beyond 

previous studies by including a separated and spatially explicit analysis of the drought hazard and exposure for irrigated and 

rain-fed agricultural systems, as well as an empirically-based weighting of vulnerability indicators. The latter based on the 510 

judgment of drought experts around the globe. The presented methodology can serve as a framework for the analysis of other 

affected sectors, such as e.g. water or energy. Findings from this study underscore the relevance of analyzing drought risk from 

a holistic perspective (i.e., including the sector-specific hazard, exposure and vulnerability) and based on a spatially explicit 

approach. By providing information on high risk areas and underlying drivers, this approach helps to identify priority regions 

as well as entry points for targeted drought risk reduction and adaptation options. While this first attempt provides valuable 515 

information at the global level, improvements could be achieved with the availability of more spatially explicit vulnerability 

information (i.e. at sub-national levels) and the availability of standardized drought impact information that can serve for a 

quantitative validation of risk levels. 
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